技術(shù)文章
Technical articles3D結(jié)構(gòu)的超材料器件由于能通過增加入射電磁波和結(jié)構(gòu)之間的重疊空間來增強(qiáng)光與物質(zhì)的相互作用并在調(diào)控太赫茲波方面提供額外的自由度,展現(xiàn)出比傳統(tǒng)平面2D結(jié)構(gòu)超材料更大的應(yīng)用潛力。然而傳統(tǒng)的制造方法在制備3D結(jié)構(gòu)器件上依然存在許多障礙,通過集成光刻、沉積、蝕刻、LIGA等一系列程序來制造3D復(fù)雜結(jié)構(gòu)不僅存在耗時(shí)和經(jīng)驗(yàn)要求高等缺點(diǎn),且所構(gòu)建的復(fù)雜3D結(jié)構(gòu)無法滿足需求。
新的加工工藝不斷被提出以開發(fā)此類復(fù)雜3D結(jié)構(gòu)超材料器件,主要的新方法包括剪紙/折紙工藝、3D打印技術(shù)、液態(tài)金屬填充技術(shù)等。其中,3D打印技術(shù)雖能勝任復(fù)雜幾何結(jié)構(gòu)的制造,但在太赫茲超材料的特征尺寸范圍內(nèi),大多數(shù)3D打印方法在打印過程中只能使用單一材料,而許多器件同時(shí)需要多種材料來支撐復(fù)雜的結(jié)構(gòu)和電磁功能,因此需結(jié)合其它步驟來引入額外的材料。如課題組前期工作提出的制備工藝,在通過微納3D打印技術(shù)直接進(jìn)行主體結(jié)構(gòu)成型后還需使用鍍膜工藝完成器件的金屬化,由于3D打印技術(shù)的階梯效應(yīng),3D打印結(jié)構(gòu)不能太復(fù)雜,否則會(huì)對(duì)金薄膜的連續(xù)性造成不利影響,使所謂的3D結(jié)構(gòu)實(shí)際上成為2.5D結(jié)構(gòu)。
在此情形下,將液態(tài)金屬填充到微流道中的液態(tài)金屬填充技術(shù)在克服此問題中具有獨(dú)。特的優(yōu)勢(shì)。液態(tài)金屬填充技術(shù)不僅可提供構(gòu)造復(fù)雜幾何形狀的替代方案,還可提供新的金屬化策略。因此,西安交通大學(xué)張留洋老師課題組利用摩方精密提供的nanoArch S130打印系統(tǒng),提出了一種將微納3D打印技術(shù)與微流道液態(tài)金屬填充技術(shù)相結(jié)合的微結(jié)構(gòu)制備工藝,作為概念驗(yàn)證,通過所提出的制備策略制備了兩種具有寬帶和多頻段特性的典型超材料,實(shí)驗(yàn)獲得了與理論仿真吻合較好的響應(yīng)光譜。該論文以“Broadband and Multiband Terahertz Metamaterials Based on 3-D-Printed Liquid Metal-Filled Microchannel"為題發(fā)表在《IEEE Transactions on Microwave Theory and Techniques》期刊上。
圖 1 3D太赫茲超材料的制造工藝示意圖:(a)PμSL 3D打印系統(tǒng),(b)3D打印超材料樣品和(c)超材料樣品的真空泵送和液態(tài)金屬填充裝置。
相較于傳統(tǒng)MEMS工藝善于加工2D結(jié)構(gòu)的不同,微納3D打印技術(shù)在構(gòu)建復(fù)雜3D結(jié)構(gòu)方面具備顯著優(yōu)勢(shì)。圖 1為3D結(jié)構(gòu)微流道器件的加工流程圖,流程簡述如下:通過3D打印機(jī)(圖 1(a))逐層固化BIO樹脂,得到包含微流道結(jié)構(gòu)樣品(圖 1(b));將所得樹脂結(jié)構(gòu)浸入異丙醇中約10分鐘以洗掉微流道中殘余的樹脂;最后進(jìn)行液態(tài)金屬填充實(shí)現(xiàn)金屬化,液態(tài)金屬填充裝置如圖 1(c)所示。
為證明所提出制備工藝的可行性,首先設(shè)計(jì)了如圖 2所示的太赫茲寬帶吸波器,其超分子由兩個(gè)相互貫穿的圓盤組成。填充前后的結(jié)構(gòu)在光學(xué)顯微鏡下的情形分別如圖 3(a)和圖 3(c)所示,在充分填充后按圖 3(f)中的流程沖洗表面多余的液態(tài)金屬。從圖 3(e)可看出,實(shí)驗(yàn)光譜和仿真計(jì)算光譜均顯示出高吸收率、大帶寬的特征,表明所提出的吸波器能在寬頻率范圍內(nèi)有效吸收入射太赫茲波。
圖 2 基于微流道的太赫茲寬帶吸波器:(a)陣列和(b)超分子。
圖 3 3D打印寬帶吸波器液態(tài)金屬填充前(a)和填充后(c)的光學(xué)顯微圖像,(b)和(d)為局部放大圖;(e)模擬和測(cè)量的吸收光譜;(f)吸收器頂部多余的液態(tài)金屬?zèng)_洗示意圖。
類似地,依據(jù)所提出的制備工藝,設(shè)計(jì)并制備了第二種太赫茲超材料(圖 4),其由兩對(duì)垂直交叉的開口環(huán)組成,在完成液態(tài)金屬填充后能在頻率為0.1至3.0 THz的范圍內(nèi)形成了五個(gè)共振波谷,因此該基于垂直開口環(huán)的超材料可歸類為多帶太赫茲超材料。每一個(gè)共振波谷的反射都接近或超過-20 dB,表明吸收率可達(dá)到99%。此外,橙色線表示通過THz-TDS測(cè)量的反射譜,其中諧振頻率和振幅與模擬結(jié)果基本一致。
圖 4 基于微流道的多帶太赫茲反射器件:(a)陣列和(b)超分子。
圖 5 太赫茲多帶超材料的顯微鏡圖像:(a)液態(tài)金屬填充前和(c)液態(tài)金屬充填后;(b)和(d)為相應(yīng)的放大圖像。(e)模擬和實(shí)驗(yàn)測(cè)量的反射光譜。